

PHOTOVOLTAIK +

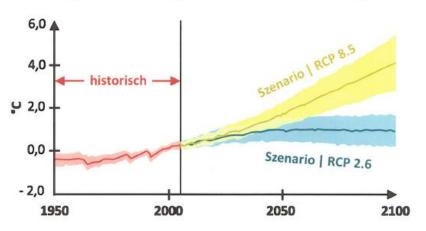
Christian Hölzl

- HTL für Wirtschaftsingenieurwesen
- Fachingenieur Fassade (HS Augsburg)
- Ausbildung zum SV (D)
- zertifizierter Photovoltaiker

Tätigkeiten:

- GF Julius Fritsche GmbH
- Leitung Bereich Glas
- Produktentwicklung
 - Aluminiumkonstruktionen
 - Brandschutzkonstruktionen
 - Glasgeländer, Absturzsicherungen
 - PV Konstruktionen (Dach, Fassade, Geländer)

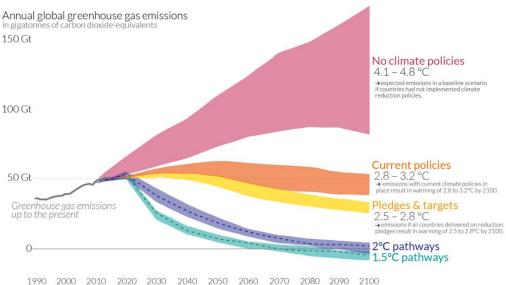
Motivation im Bereich PV:


- Photovoltaik mit zusätzlichen Nutzen
- Disziplinübergreifend
- breites Nutzerfeld (Gewerbe, Privat, Industrie)
- Planung und Montage quer durch alle Qualifikationsebenen
 - -> großes Fehlerpotential!
- Nachhaltigkeit

Themen:

- Warum Photovoltaik?
- Was ist PV? Funktionsweise Unterschiede
- PV Anwendungen im Gebäude
- Anforderungen Statik, Bauphysik, Brandschutz, Elektrotechnik...
- Projekte und Herausforderungen

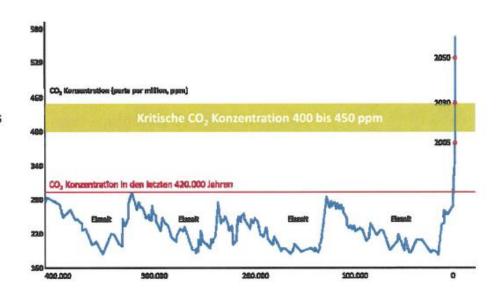
Änderung der mittleren globalen Erdoberflächentemperatur



Quelle: IPCC Sachstandsbericht; Darstellung: Österreichische Energieagentur

Global greenhouse gas emissions and warming scenarios Our World

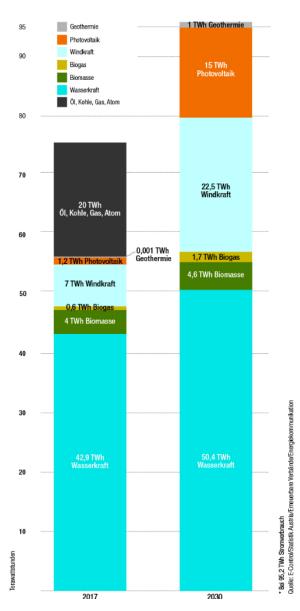
in Data


- Each pathway comes with uncertainty, marked by the shading from low to high emissions under each scenario.
- Warming refers to the expected global temperature rise by 2100, relative to pre-industrial temperatures.

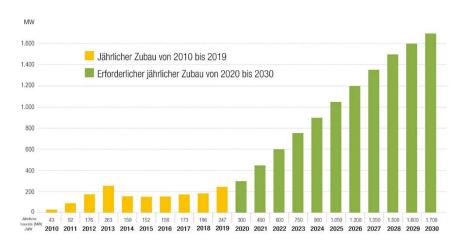
Entwicklung des CO₂-Gehalts

- CO₂: natürlicher Bestandteil der Luft; entsteht bei Verbrennung kohlenstoffhaltiger Substanzen;
- CO₂-Gehalt der Luft: 408,16 ppm (2018), 280 ppm (vorindustrielle Zeit);
- Vergleichbar hohe CO₂-Konzentration wie heute gab es zuletzt vor 5,2 und 2,6 Mio. Jahren; Ursachen: Vulkanausbrüche, Verschiebungen der Kontinente, veränderte Sonneneinstrahlung;
- Ursachen heute: Verbrennung fossiler Energieträger, Rückgang Permafrostböden (Freisetzung Methan) beschleunigt Erderwärmung zusätzlich;
- Temperaturanstieg von bis zu 5,4°C bis 2100 erwartet,
 Erholung könnte 100.000 Jahre dauern

2050 EU - Ziele


"Fahrplan für den Übergang zu einer wettbewerbsfähigen CO₂-armen Wirtschaft bis 2050" der EU-Kommission mit dem Ziel, die CO₂-Emissionen bis 2050 um 80-95% in der EU zu senken.

- Inhalt aus dem Fahrplan:
 - Elektrizität: Dekarbonisierung der Stromwirtschaft bis 2050, vermehrte Nutzung von Strom für Mobilität und Heizen
 - Anteil CO₂-armer Technologien am Strommix soll auf knapp 100% im Jahr 2050 steigen
 - Mobilität: verbesserte Fahrzeugeffizienz, neue Kraftstoffe und Antriebssysteme, bessere Nutzung von Netzen und sicherer Betrieb durch Informations- und Kommunikationssysteme
 - Gebäude: Senkung der Emissionen um 90% bis 2050 durch Verbesserung der Gesamtenergieeffizienz und Einsatz von wenig CO₂-intensivem Strom und erneuerbaren Energieträgern
 - Industrie: Verminderung der Emissionen um 83-87% bis 2050 durch ressourcenschonende und energieeffiziente Prozesse, mehr Recycling etc.; CO₂-Abscheidung und –Speicherung
 - Landnutzung: CO₂-Reduktion von bis zu 49% bis 2050 möglich, Maßnahmen umfassen nachhaltige Effizienzsteigerungen, effizienter Einsatz von Düngemitteln, Bio-Vergasung organischen Düngers, bessere Dungbewirtschaftung, etc.

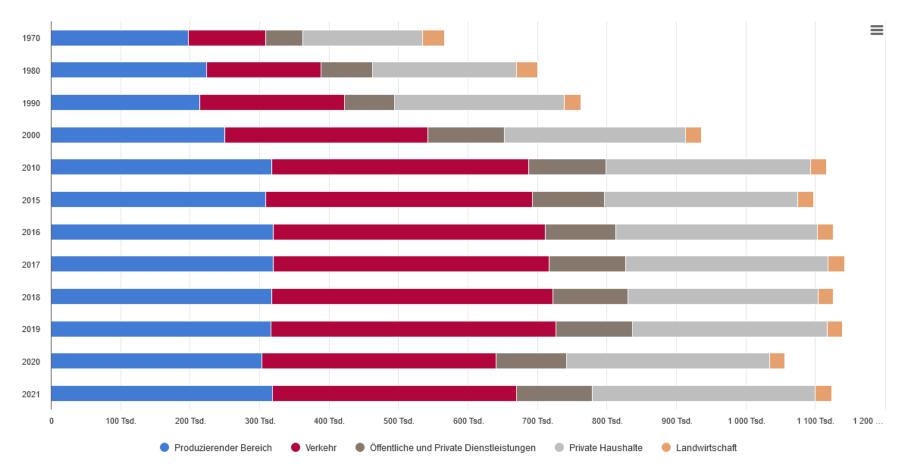


Stromproduktion 2017 und Potenzial 2030

100 % erneuerbarer Strom bis 2030*

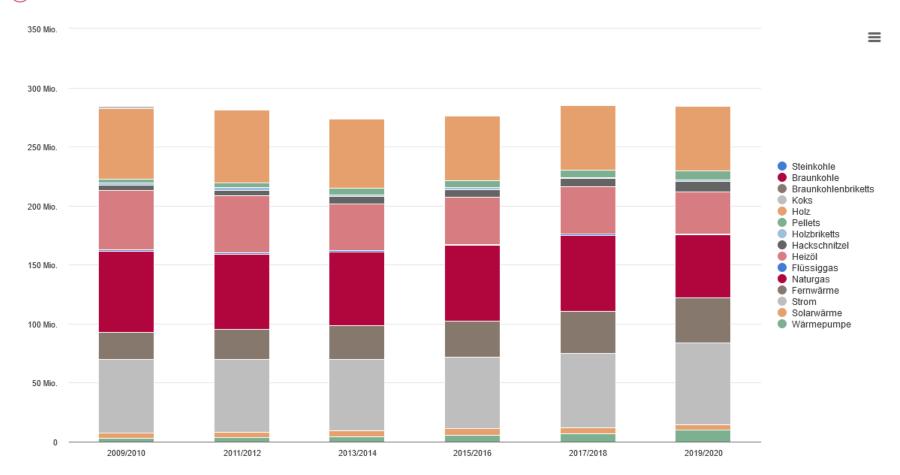
PV-Zubau in Österreich 2010 - 2019 und erforderlicher Ausbau 2020 - 2030

Stromerzeugung und -aufbringung

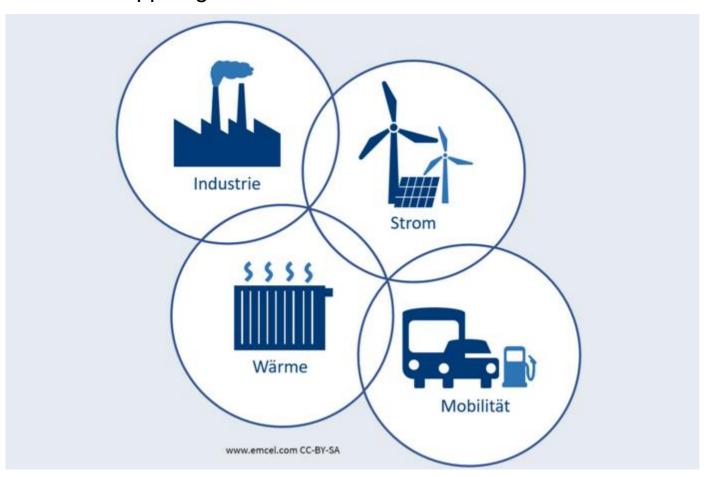

			•
la	hr	~	

Art der Erzeugung	Jahr	GWh	Anteil an der Aufbringung	Anteil an der Erzeugung
Wasserkraftwerke	2021	42.478,2	43,9%	60,4%
Wärmekraftwerke	2021	18.654,6	19,3%	26,5%
Steinkohle	2021	109,1	0,1%	0,2%
Derivate	2021	2.018,9	2,1%	2,9%
Erdölderivate	2021	622,2	0,6%	0,9%
Erdgas	2021	10.751,4	11,1%	15,3%
Biogene Brennstoffe	2021	3.029,0	3,1%	4,3%
Sonst. biogene Brennstoffe	2021	1.337,5	1,4%	1,9%
Sonst. Brennstoffe	2021	786,5	0,8%	1,1%
Wind	2021	6.737,8	7,0%	9,6%
Photovoltaik	2021	2.398,3	2,5%	3,4%
Geothermie	2021	0,0	0,0%	0,0%
Statistische Differenz	2021	22,9	0,0%	0,0%
Insgesamt	2021	70.291,8	72,7%	100,0%
davon Erneuerbare	2021	55.981,0	57,9%	79,6%
Physikalische Importe	2021	26.436,2	27,3%	
Aufbringung	2021	96.728,0	100,0%	

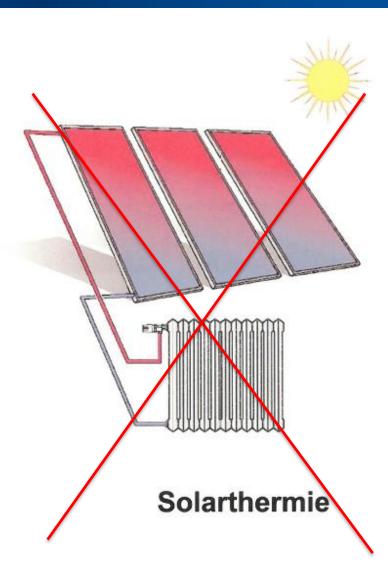
Quelle: E-Control; Oesterreichs Energie

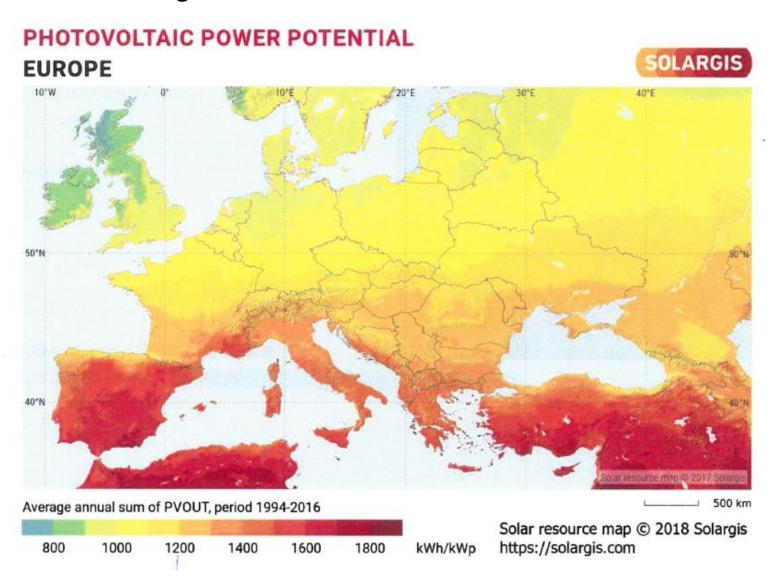

Energetischer Endverbrauch – in Terajoule (Grafik)

Q: STATISTIK AUSTRIA, Energiebilanzen. Erstellt am 11.11.2022.

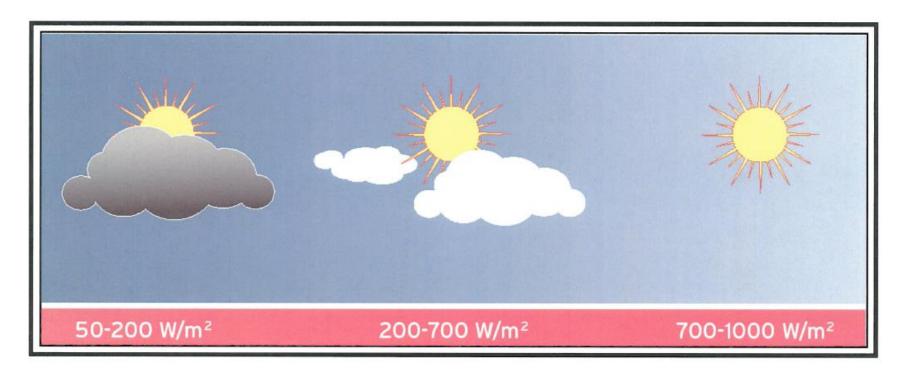

Energieeinsatz in Haushalten nach Energieträgern – in Gigajoule (Grafik)


Q: STATISTIK AUSTRIA, MZ Energieeinsatz der Haushalte. Erstellt am 03.06.2022.


Sektorenkopplung



Photovoltaik



Globalstrahlung

Globalstrahlung

Quelle: Photovoltaik für Profis, Verlag: Solarpraxis AG, Berlin, ISBN-10: 3-934595-38-3

ACHTUNG!

- Sobald die Sonne scheint liegt Spannung an (bis zu 1000V!)
- Alle elektrischen Arbeiten (außerStecker zusammenstecken) müßen von einer Elektro-Fachfirma ausgeführt werden!

Einsatzgebiete

Aufdach Indach

Einsatzgebiete

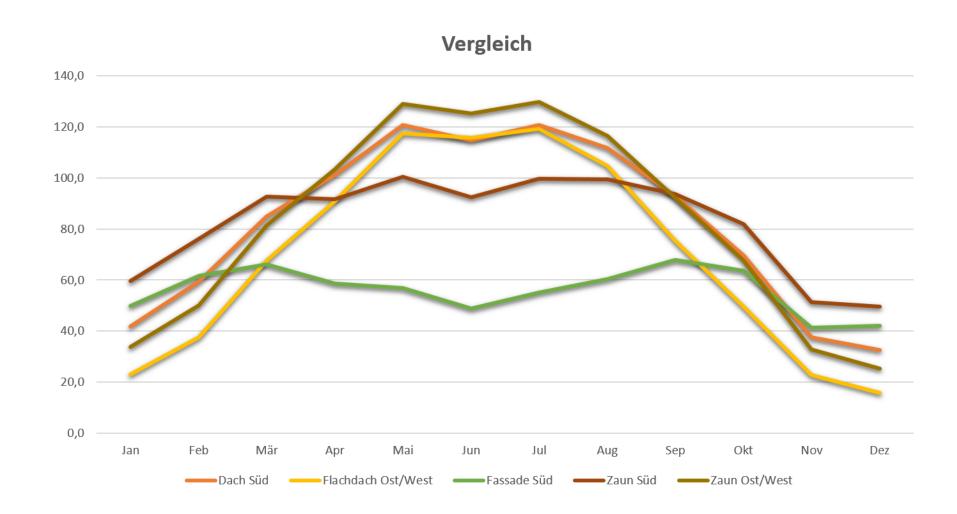
als Dach

Fassade

Einsatzgebiete

als Geländer als Zaun

Einsatzgebiete


auf Freifläche

als Hobby

uvm. zB Balkonkraftwerke, Floating PV...

Alle beschienenen Flächen können doppelt genutzt werden!

Die Akteure

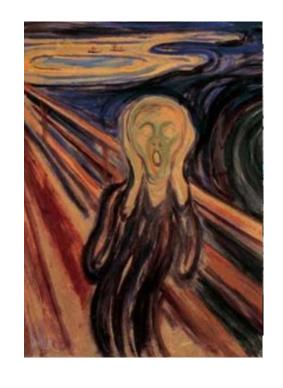
- Elektriker
- Solateur
- Dachdecker
- Glaser
- Fassadenbauer
- Metallbauer
- Zimmerer
- Installateur
- Hersteller
- Großhandel
- Endkunde
- verschiedenste Fachplaner
- Energieberater
- ...

Immer dabei: Elektriker

Spannungsfeld der Interessen

- Preis
- Installierte Leistung MWp
- Dichtheit des Daches
- Montagefreundlichkeit
- Statik (zB ÖNORM B3716)
- Bauphysik
- Brandschutz
- Autarkie
- Lebensdauer
- Garantie (30 Jahre und mehr)
- schnelles Geld (?!)
- ...

Anforderungen an die Photovoltaik


Statik

Wirtschaftlichkeit

Bauphysik

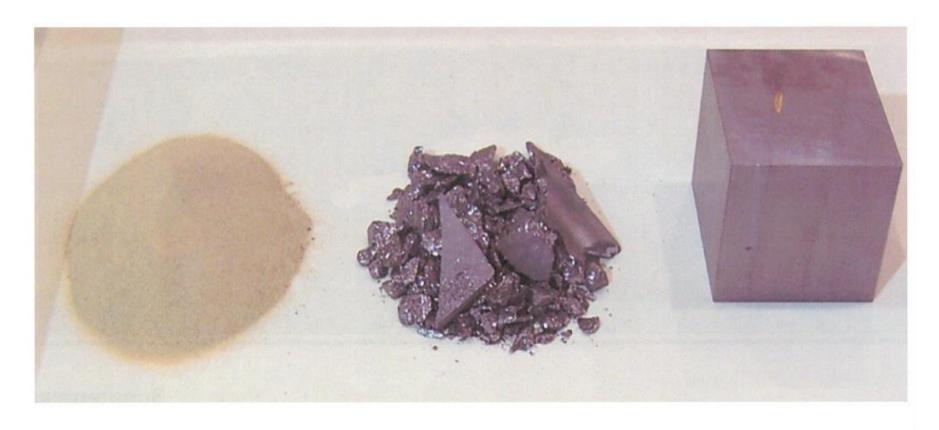
Brandverhalten

Leistung

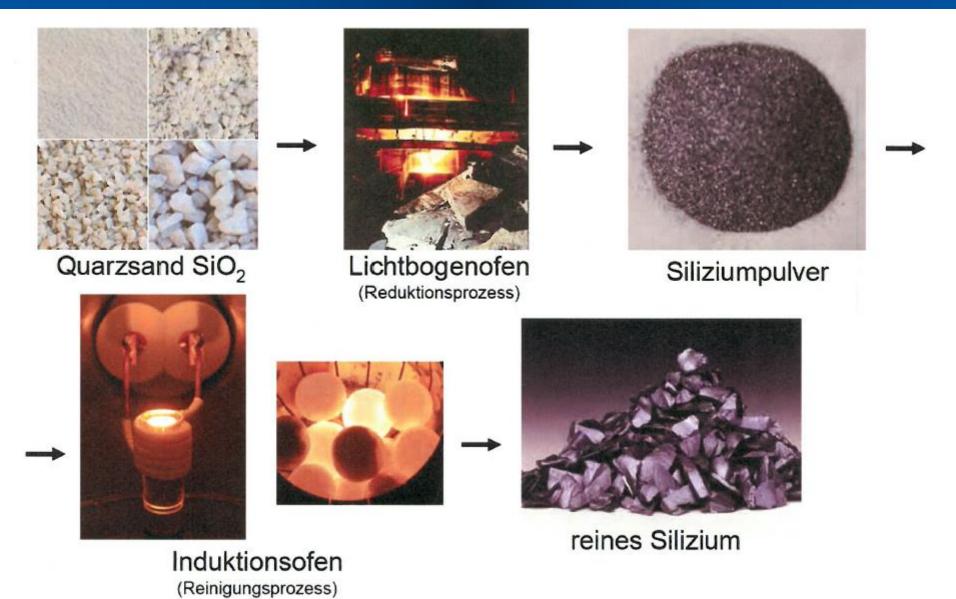
Ästhetik

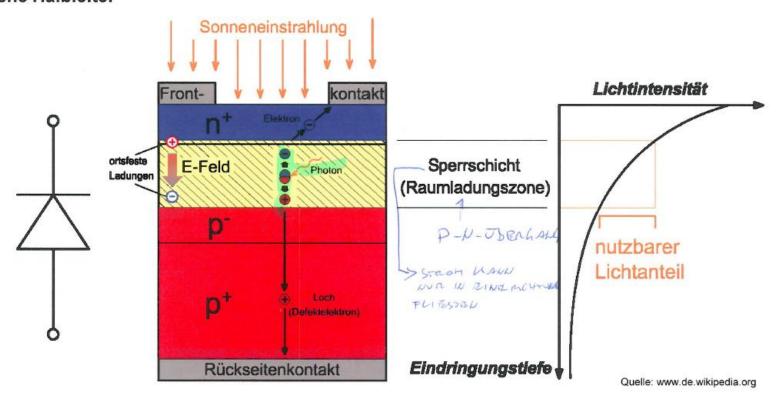
Verfügbarkeit

Preis

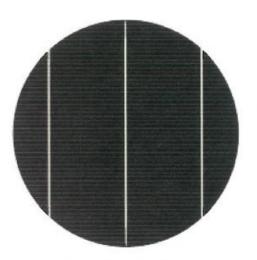

Montagefreundlichkeit

Vom Sand



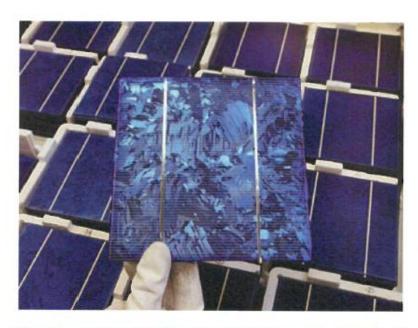

Das am häufigsten auf der Erde vorkommende Element ist Silizium, welches im Quarzsand enthalten ist. In einem speziellen Ofen bei einer Temperatur von 1800°C wird Silizium mit einer Reinheit von ca. 98 % gewonnen.

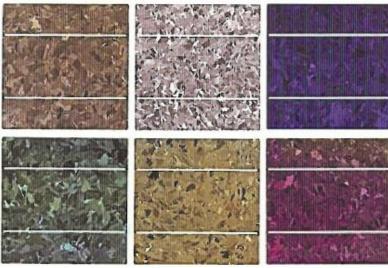
Der elektrische Halbleiter



Monokristalline Siliziumzelle

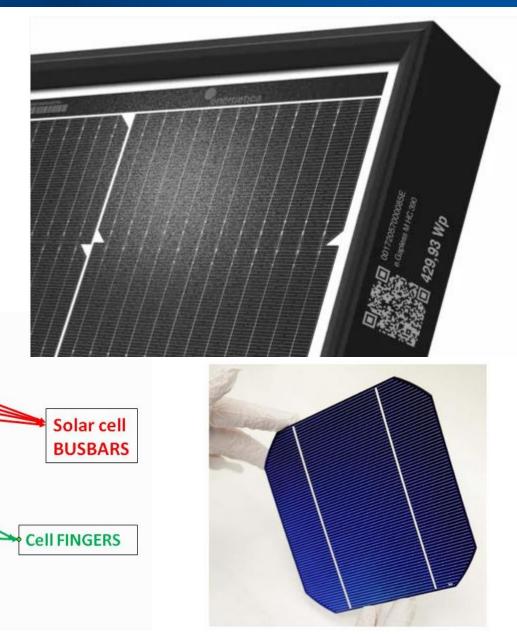
- Silizium Atome bilden auf der ganzen Solarzelle eine Kristallgitterstruktur
- Aus einer hochreinen Silizium -Schmelze wird ein Einkristall gezogen, Scheiben zersägt und positiv bzw. negativ dotiert
- Aufwendig in der Herstellung
- Hohe Langzeitstabilität (Leistungsgarantien: 20 + x Jahre)
- Typische Zellenwirkungsgrade:
 ca. 15 25 %

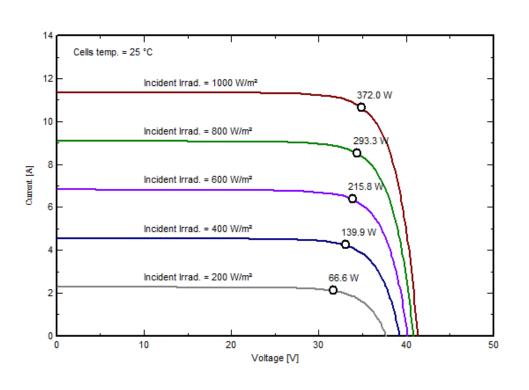




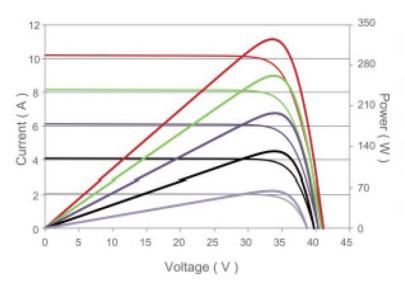
Photovoltaik Zelle

Polykristalline Siliziumzelle


- Korngrenzen zwischen einzelnen monokristallinen Bereich erkennbar
- Hochreine Silizium Schmelze wird in Ingots gegossen, in Scheiben zersägt und positiv bzw. negativ dotiert
- Weniger aufwendig in der Herstellung wie monokristallines Si
- Hohe Langzeitstabilität (Leistungsgarantien: 20 + x Jahre)
- Typische Zellenwirkungsgrade:
 ca. 13 20 %

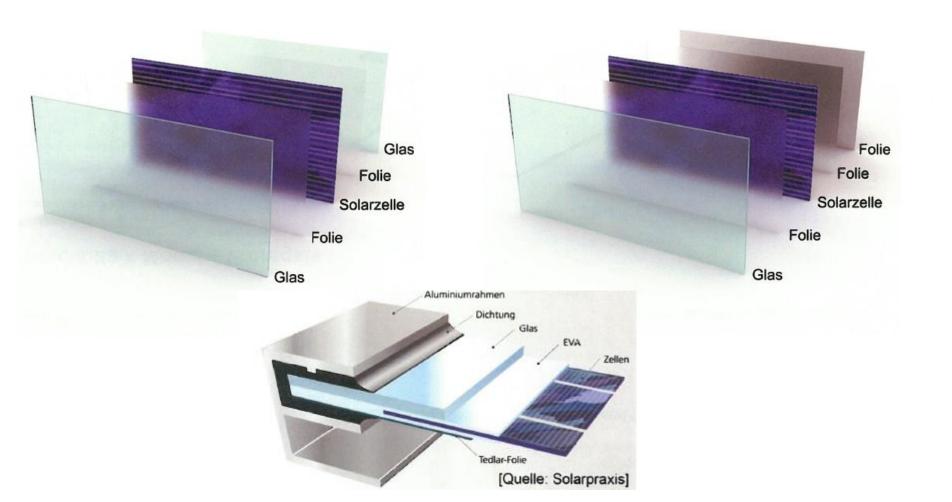


Busbars



U/I Kennlinie

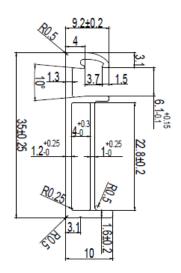
U/I Kennlinie + P/U Kennlinie

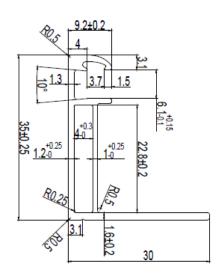


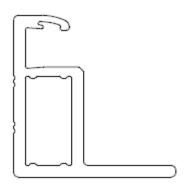
Arten PV Paneele:

Glas-Glas-Modul

Glas Folie Modul






- Glas/Folien Modul mit Alurahmen nur Standardmaße
- Glas/Glas Modul
 - Standardmaß
 - Sondermaß
- Glas/Glas Modul mit Alu Rahmen (VG 2x2 bzw 2x1,6 mm!)

"stabile" Rahmen ab 35mm Bauhöhe:

Derzeit am Markt schon Rahmen <u>unter</u> 30mm verfügbar! Achtung: Legierungsunterschiede (EN AW 6060, 6063, 6005)

Arten der Verbundfolien

- EVA
- POE
- EPE
- PVB
- ...

Verbundsicherheitsglas -> nicht immer!

Der Schubverbund darf mit $G=0.4~\mathrm{N/mm^2}$ angesetzt werden, wenn zumindest Polyvinyl-Butyral-Folien (PVB-Folien) mit folgenden mechanischen Eigenschaften bei 23 °C verwendet werden bzw. bei Verwendung anderer Folien die Gleichwertigkeit nachgewiesen wird:


- Reißfestigkeit ≥ 20 N/mm²;
- Bruchdehnung > 250 %.

ÖNORM B3716-1

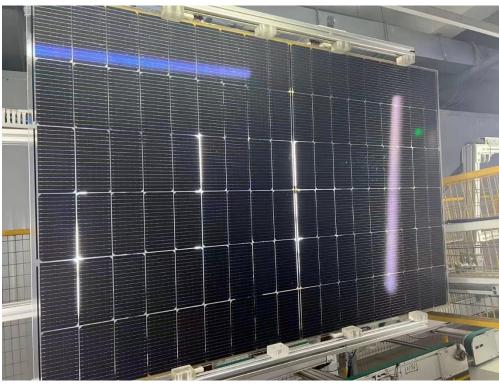
Glasarten

- Solarglas (mit oder ohne AR Beschichtung)
 - 3,2mm (Glas/Folie) i. d.R. ESG
 - 2mm (Glas/Glas) i.d.R. bis ca. 90 MPa 120 MPa
 - 1,6mm (Glas/Glas) thermisch behandelt
- Floatglas
 - 3 bis 12mm (i.d.R. ESG oder TVG)

Siebdruckraster zur Folie (Ansicht Rückseite)

Bereich zwischen den Zellen transparent (Ansicht Vorderseite)





- Die Auswahl des Modultyps richtet sich nach:
 - Zellmaterial (mono- bzw. polykristallin, Dünnschicht)
 - Anwendung (GIPV, Dach, Fassade,...)
 - Glas-Glas- oder Glas-Folien-Laminat, mit oder ohne Rahmen
 - Statischen Belastungen
 - Farbe (Zelle, Folie und Rahmen)
 - Qualität, Sicherheit und Gefühl
 - Garantie
 - Rechtliche Sicherheit

Halbzellenmodule

Modul in der Fertigung ohne Rahmen

SMBB Technology Half Cut Topcon Cell

High Energy Performance

100% Inspection 30years Guarantee

Anschlussdosen

an der Kante

in der Fläche

Achtung – Glasbohrung!

Meyer Burger Fertigung:

https://www.youtube.com/watch?v=Dd-L6rQD0IA

Der Preis ist heiß!

verschieden Ansätze:

- Stromerzeugung steht im Vordergrund -> Wp Preis ("Elektrikerkalkulation")
- Zweitnutzen steht im Vordergrund -> Funktion ("Glasbaukalkulation")

Standardmodule

- gerahmt Glas/Folie ca. 0,25 €/Wp
- gerahmt Glas/Glas 2+2 ca. 0,32 €/Wp
- ungerahmt Glas/Glas 3+3 ca. 0,65 €/Wp
- ungerahmt Glas/Glas 4+4 ca. 0,75 €/Wp
- ungerahmt Glas/Glas 6+6 ca. 1,2 €/Wp

Auf Maß gefertigte Module

Ungerahmt Glas/Glas 4+4 ca. 1,75 €/Wp

Photovoltaik im konstruktiven Glasbau heißt:

bauen mit 2+2mm V(S)G!!

bzw. um jeden mm Glasdicke kämpfen...

Normen und Regelwerke für die Anwendung als BIPV (Auszug)

- OVE EN IEC 61215 Terrestrische Photovoltaik(PV)-Module Bauarteignung und Bauartzulassung
- OVE EN 50583 BIPV Module
- ÖNORM B3716
- DIN 18008
- OIB RL 4
- OIB RL 2
- MVV TB
- Technische Baubestimmungen für PV-Module als Bauprodukte und zur Verwendung in Bauarten (ALLIANZ BIPV)
- ...

BIPV wird aus den unterschiedlichsten Blickwinkeln geregelt! ...bzw versucht zu regeln....

EN 50583-2:2016

Tabelle 2 - Montagekategorien A - E

Kategorie A:	schräg, dachintegriert, nicht zugänglich vom Gebäudeinneren			
	Die PV-Module sind in einem Winkel von 0° bis 75° (siehe Bild 1) in die Gebäudehülle montiert, mit einer unterlegten Sperre zum Schutz vor dem Herunterfallen größerer Glasstücke in darunter befindliche zugängliche Bereiche.			
Kategorie B:	schräg, dachintegriert, zugänglich vom Gebäudeinneren			
	Die PV-Module sind in einem Winkel von 0° bis 75° (siehe Bild 1) in die Gebäudehülle montiert.			
Kategorie C:	nicht schräg (vertikal) eingebaut, nicht zugänglich vom Gebäudeinneren	$\overline{}$		
	Die PV-Module sind in einem Winkel von einschließlich 75° bis einschließlich 90° (siehe Bild 1) in die Gebäudehülle montiert, mit einer hinterlegten Sperre zum Schutz vor dem Hineinfallen größerer Glasstücke oder Personen in angrenzende tiefer gelegene Bereiche im Gebäudeinneren.			
Kategorie D:	nicht schräg (vertikal) eingebaut, zugänglich vom Gebäudeinneren			
	Die PV-Module sind in einem Winkel von einschließlich 75° bis einschließlich 90° (siehe Bild 1) in die Gebäudehülle montiert.			
	1			
Kategorie E:	äußerlich integriert, zugänglich oder nicht zugänglich vom Gebäudeinneren			
	Die PV-Module sind am Gebäude montiert und bilden eine zusätzliche funktionelle Schicht (wie in 3.1 definiert) außerhalb der Gebäudehülle (z. B. Balkone, Geländer, Rollläden, Markisen, Jalousien, Brise-Soleil, usw.).			

Technische Baubestimmungen für PV-Module als Bauprodukte und zur Verwendung in Bauarten (ALLIANZ BIPV)

Einbausituation Randbedingungen **Anforderung** Nachweis Fassaden und Brandschutz Brüstungen mit Brandverhalten PV-Modul Klassifizierungsbericht Neigungswinkel ≥ 80° (siehe Tabelle 2): für PV-Modul durch PV-Modul = VG¹. Mindestanforderung: Prüfstelle oder obiekt-4-seitig linienförmig i.d.R. schwerentflammbar bezogenes Brandschutzkonzept gelagert je nach Anwendung ggf. PV-Aufbau (Deckhöhere Anforderungen: schicht, Zellen und nichtbrennbar Einkapselung) mit Mechanische Festigkeit VSG als Rückglas oder PV-Modul als und Standsicherheit Bestandteil von Übereinstimmung mit Mehrscheiben- Produktnorm VG/VSG/MIG Isolierglas (MIG) mit innenliegendem VSG 2) Technischen Baubestimmungen zu Einbau, Befestigung, Planung, Bemessung, Ausführung, d. h. Einbau nach DIN 18008 Abweichungen von Brandschutz Zeilen 1 und 2, z, B. 1) Brandverhalten PV-Modul 1) Klassifizierungsbericht ■ Modulfläche > 2,0 m² für PV-Modul durch (siehe Tabelle 2): Überkopfverglasung Mindestanforderung: Prüfstelle oder objektmit PV ≠ VSG normalentflammbar bezogenes Brand-(z.B. EVA statt PVB) je nach Anwendung ggf. schutzkonzept Einbau nicht in höhere Anforderungen: Übereinstimmung schwerentflammbar oder nichtbrennbar mit DIN 18008 geklebte Glas-2) aaf, harte Bedachung 2) abP für BIPV-System befestigung ohne durch Prüfstelle oder AbZ/aBG objektbezogenes Brandschutzkonzept Mechanische Festigkeit und Standsicherheit je nach Abweichung von 1) Produkt und/oder 1) abZ, alternativ ZiE 2) Anwendung: 2) aBG, alternativ vBG Technische Baubestimmungen zu Einbau, Befestigung, Pla-

nung, Bemessung, Ausführung

OVE EN 50583

2) Steifheit von Verbundglas, welches PV-aktive Komponenten enthält:

Bei der Berechnung der mechanischen Steifheit von PV-Modulen müssen bei der Bestimmung des oberen Temperatur-Grenzwertes der Zwischenschicht der solare Absorptionsgrad und die Wärmedurchlässigkeit der vollständigen Komponente berücksichtigt werden. Wenn keine Werte zur Verfügung stehen, muss eine Zwischenschichttemperatur von

- 85 °C als oberer Grenzwert f
 ür PV-Module, die den Vorderteil eines W
 ärmed
 ämmungspanels bilden,
- 80 °C als oberer Grenzwert f
 ür PV-Module, die das vordere Element einer Isolierglaseinheit bilden,
- 65 °C als oberer Grenzwert f
 ür alle anderen PV-Module

verwendet werden.

ANMERKUNG Die Temperaturen von PV-Modulen können erheblich abweichen, wenn die Belüftung blockiert ist. Darauf kann durch den Systementwurf stark Einfluss genommen werden.

vgl. VSG im Parapetbereich mit Email?!
B3716-1 kurzzeitige Einwirkungen G=0,4 N/mm²

Versuchsaufbau Fritsche

- Elektrisch nicht angeschlossen
- Temperaturen bis 85°C konnten bestätigt werden
- Bei Wind schneller Temperaturabfall!

G=0,4 N/mm² OKAY (?)

EN 50583-1:2016

PV-Module und Resttragfähigkeit nach Bruch:

Bei der Prüfung von PV-Modulen auf ihre Resttragfähigkeit nach Bruch

- muss die Temperatur des PV-Moduls für PV-Module, welche auf ihre Tragfähigkeit unter Windlast geprüft werden, (65 ± 2) °C betragen. Die Prüfung muss mit einer Windlast durchgeführt werden, die 50 % der Entwurfs-Windlast entspricht;
- muss die Temperatur des PV-Moduls für PV-Module, welche auf ihre Tragfähigkeit unter Schneelast geprüft werden, (22 ± 2) °C betragen. Die Prüfung muss mit einer Windlast durchgeführt werden, die 100 % der Entwurfs-Schneelast entspricht.

Genauer Prüfablauf? Alle Scheiben gebrochen? Wie lange wird belastet?

Vertikalverglasungen vgl.OIB RL 4 / B 3716 -> keine Anforderungen (außer f. ESG)

EN 50583-1:2016

Tabelle 2 - Montagekategorien A - E

	Tabelle 2 - Montagerategorien A - I	_
Kategorie A:	schräg, dachintegriert, nicht zugänglich vom Gebäudeinneren	
	Die PV-Module sind in einem Winkel von 0° bis 75° (siehe Bild 1) in die Gebäudehülle montiert, mit einer unterlegten Sperre zum Schutz vor dem Herunterfallen größerer Glasstücke in darunter befindliche zugängliche Bereiche.	
Kategorie B:	schräg, dachintegriert, zugänglich vom Gebäudeinneren	^
	Die PV-Module sind in einem Winkel von 0° bis 75° (siehe Bild 1) in die Gebäudehülle montiert.	
Kategorie C:	nicht schräg (vertikal) eingebaut, nicht zugänglich vom Gebäudeinneren	$\overline{}$
	Die PV-Module sind in einem Winkel von einschließlich 75° bis einschließlich 90° (siehe Bild 1) in die Gebäudehülle montiert, mit einer hinterlegten Sperre zum Schutz vor dem Hineinfallen größerer Glasstücke oder Personen in angrenzende tiefer gelegene Bereiche im Gebäudeinneren.	
Kategorie D:	nicht schräg (vertikal) eingebaut, zugänglich vom Gebäudeinneren	$\overline{}$
	Die PV-Module sind in einem Winkel von einschließlich 75° bis einschließlich 90° (siehe Bild 1) in die Gebäudehülle montiert.	
Kategorie E:	äußerlich integriert, zugänglich oder nicht zugänglich vom Gebäudeinneren	
	Die PV-Module sind am Gebäude montiert und bilden eine zusätzliche funktionelle Schicht (wie in 3.1 definiert) außerhalb der Gebäudehülle (z. B. Balkone, Geländer, Rollläden, Markisen, Jalousien, Brise-Soleil, usw.).	

4.3.2.3 Zusätzliche Anforderungen für Kategorie A: schräg, dachintegriert, nicht zugänglich vom Gebäudeinneren

Tabelle 3 – Zusätzliche Anforderungen für BIPV-Module – Kategorie A

	CPR-Anforderungen	Normen, Vorschriften, Prüfverfahren	Bemerkung
1.	Mechanische Festigkeit und Standsicherheit		
2.	Brandschutz	EN 13501-2	Brandschutzklassifizierung
3.	Hygiene, Gesundheit und Umweltschutz		
4.	Nutzungssicherheit		-
5.	Schallschutz		
6.	Energieeinsparung und Wärmeschutz	EN 410 und A.3	Berechnung der Eigenschaften von Licht und Solarenergie. Nur anwendbar, wenn die darunter liegende Schicht transparent ist.
			Das PV-Modul muss bei Bedingungen mit unterbrochenem Stromkreis charakterisiert werden.
		EN 673 oder EN 674 oder EN 675	Bestimmung der thermischen Eigenschaften von Glas in Gebäuden.
			Das PV-Modul muss bei Bedingungen mit unterbrochenem Stromkreis charakterisiert werden.
7.	Nachhaltige Nutzung natürlicher Ressourcen		

keine Anforderungen

EN 50583-1:2016

Tabelle 2 - Montagekategorien A - E

Kategorie A:	schräg, dachintegriert, nicht zugänglich vom Gebäudeinneren	
	Die PV-Module sind in einem Winkel von 0° bis 75° (siehe Bild 1) in die Gebäudehülle montiert, mit einer unterlegten Sperre zum Schutz vor dem Herunterfallen größerer Glasstücke in darunter befindliche zugängliche Bereiche.	
Kategorie B:	schräg, dachintegriert, zugänglich vom Gebäudeinneren	^
	Die PV-Module sind in einem Winkel von 0° bis 75° (siehe Bild 1) in die Gebäudehülle montiert.	
Kategorie C:	nicht schräg (vertikal) eingebaut, nicht zugänglich vom	
	Gebäudeinneren	
	Die PV-Module sind in einem Winkel von einschließlich 75° bis einschließlich 90° (siehe Bild 1) in die Gebäudehülle montiert, mit einer hinterlegten Sperre zum Schutz vor dem Hineinfallen größerer Glasstücke oder Personen in angrenzende tiefer gelegene Bereiche im Gebäudeinneren.	
Kategorie D:	nicht schräg (vertikal) eingebaut, zugänglich vom Gebäudeinneren	
	Die PV-Module sind in einem Winkel von einschließlich 75° bis einschließlich 90° (siehe Bild 1) in die Gebäudehülle montiert.	
Kategorie E:	äußerlich integriert, zugänglich oder nicht zugänglich vom Gebäudeinneren	
	Die PV-Module sind am Gebäude montiert und bilden eine zusätzliche funktionelle Schicht (wie in 3.1 definiert) außerhalb der Gebäudehülle (z. B. Balkone, Geländer, Rollläden, Markisen, Jalousien, Brise-Soleil, usw.).	

Tabelle 7 – Zusätzliche Anforderungen für BIPV-Module – Kategorie E

	CPR-Anforderungen	Normen, Vorschriften, Prüfverfahren	Bemerkung	
1.	Mechanische Festigkeit und Standsicherheit			
2.	Brandschutz			
3.	Hygiene, Gesundheit und Umweltschutz			
4.	Nutzungssicherheit		Zusätzlich dürfen nationale Vorschriften für absturz- sichernde Verglasungen gelten.	Horizontal-
5.	Schallschutz			verglasung?!
6.	Energieeinsparung und Wärmeschutz	EN 410	Berechnung der Eigenschaften von Licht und Solarenergie. Das PV-Modul muss bei Bedingungen mit unterbrochenem Stromkreis charakterisiert werden.	
		EN 14500	Abhängig von der Anwendung	
7.	Nachhaltige Nutzung natürlicher Ressourcen			

3.1

gebäudeintegrierte Photovoltaik-Module BIPV-Module

Photovoltaik-Module gelten als gebäudeintegriert, wenn die PV-Module eine konstruktive Komponente des Gebäudes darstellen und eine der in der Verordnung (EU) für Bauprodukte CPR 89/106/EWG^{N1)} definierten Funktionen erfüllen. Somit ist das BIPV-Modul eine Voraussetzung für die Integrität der Funktionalität von Gebäuden. Wenn das integrierte PV-Modul demontiert wird (im Fall von strukturell eingebundenen Modulen schließt die Demontage das angrenzende Bauprodukt mit ein), müsste das PV-Modul durch ein geeignetes Bauprodukt ersetzt werden.

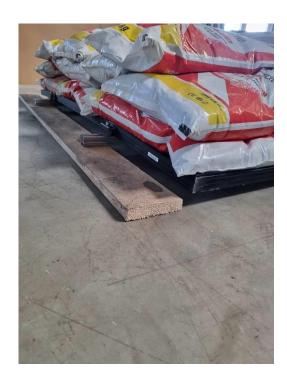
Die Gebäudefunktionen im Zusammenhang mit BIPV sind eine oder mehrere der folgenden:

- mechanische Festigkeit und strukturelle Integrität;
- primärer Witterungsschutz: Regen, Schnee, Wind, Hagel;
- Energieeinsparung, wie z. B. Abschattung, Tageslichtbeleuchtung, Wärmedämmung;
- Brandschutz;
- Schallschutz;
- Trennung von Innen- und Außenumgebungen;
- Sicherung, Schutz oder Sicherheit.

Die eigenen elektrotechnischen Eigenschaften von PV, wie z. B. Antennenfunktion, Energieerzeugung und elektromagnetische Abschirmung usw., sind allein nicht ausreichend, um PV-Module als gebäudeintegriert zu qualifizieren.

Keine Anforderung zur Nutzungssicherheit bei Sonnenschutzlamellen?

Achtung – Schnee!


Statik

IEC 61215:

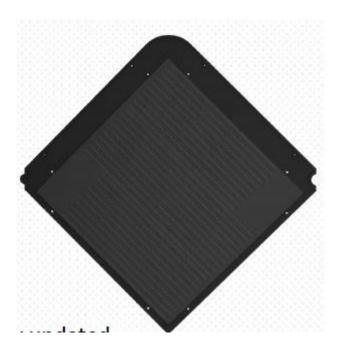
Mechanical Load

Front Side Max. 5400Pa, Rear Side Max. 2400Pa

Zellbrüche bereits ab 2,4 kN/m² (=2400Pa)!!

Einbauort: Innerkrems Sk = 4,2kN/m²

BIPV SYSTEME

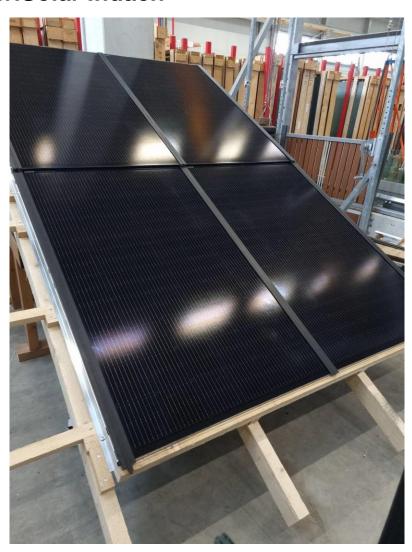

Indachsysteme

- Ersetzen die Dachhaut
- kleinteilig -> gut bei kleinen Dachflächen
- Homogenes Erscheinungsbild
- Färbige Gestaltung möglich
- Stark wachsender Markt
- Arten
 - Dachziegel
 - Dachplatten
 - Standard Glas/Glas Module

Solar Dachziegel

Achtung:

- schwer optimierbar
- viele Steckkontakte


PV Dachplattten

friSolar Indach

- Auf Basis friSolar roof
- Ersetzt die Dachhaut
- Wirtschaftlich durch Standardmodule
- Montiert auf bestehende Ziegellattungen
- Sehr hoher Wirkungsgrad
- Hohe Belastbarkeit und Hagelfestigkeit

friSolar Indach

nach dem Saharasandereignis 03/2022

Sehr guter Selbstreinigungseffekt!

friSolar ROOF

PV-Glasdachsystem für:

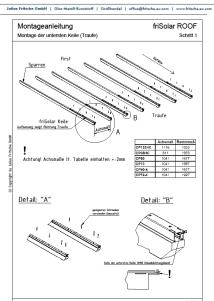
- Holz-, Stahl-, Alu-Unterkonstruktion
- Statisch für und Ö und D als Dach ausgelegt
- bifaciale Zelltechnologie ca. 15% mehr Ertrag
- Resthelligkeit

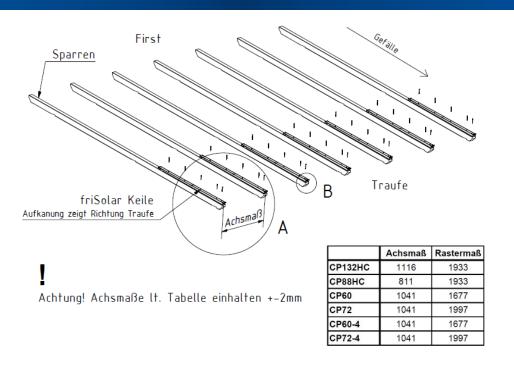
friSolar ROOF

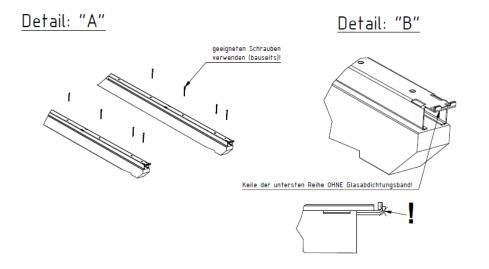


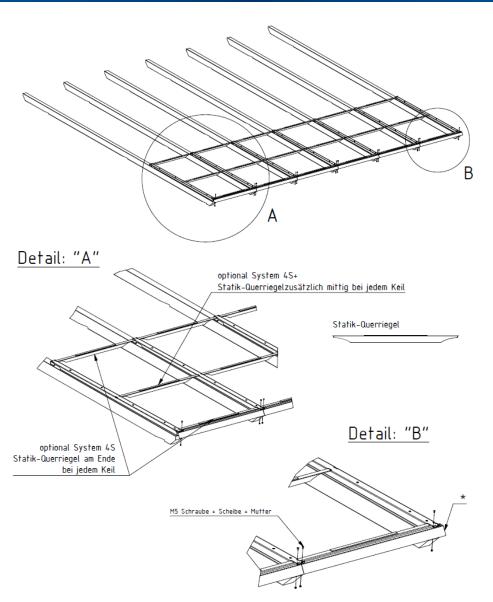
Technikprospekt

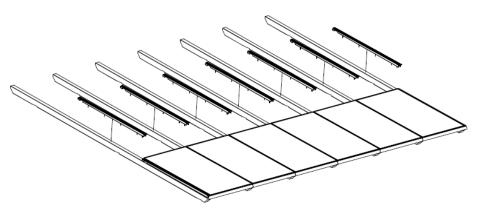
Version 2.0 - 2023

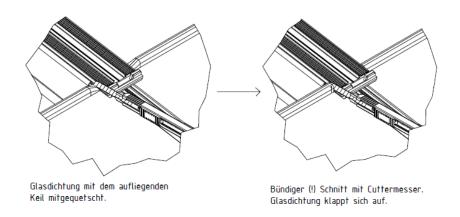

Alles aus einer Hand.

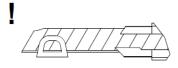






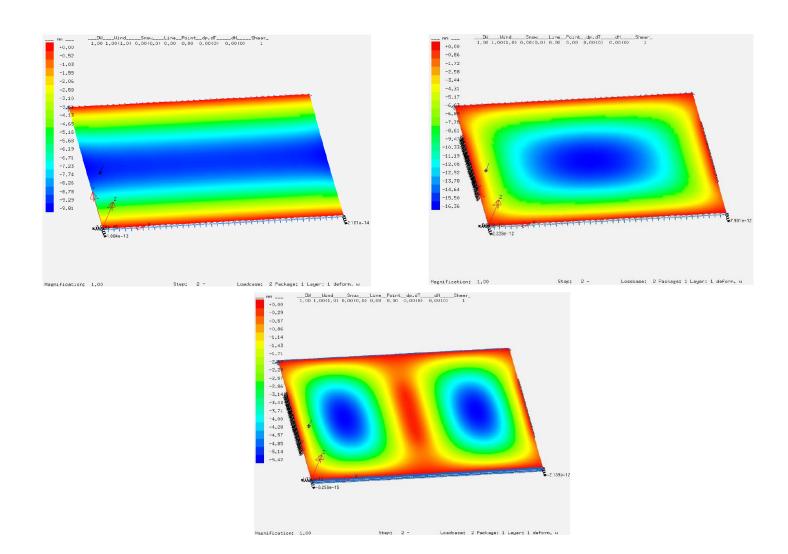


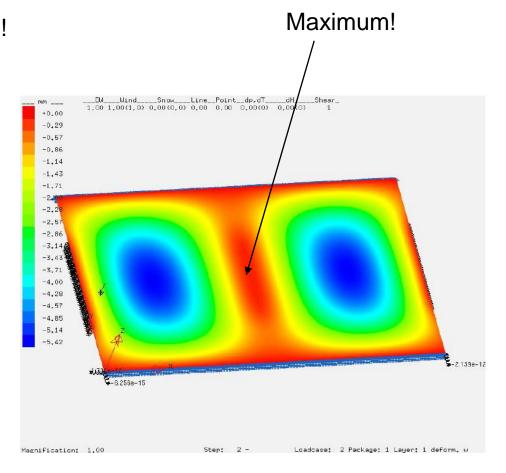

Traufbleche mit M5 Schrauben inkl. Scheibe und Mutter verschrauben und Folie des Klebestreifen entfernen.


* Achtung! Seitliche Traufbleche sind länger!

Montage der 2. Keilreihe direkt anstoßend an die untersten Keile und Aufkleben des Auflagegummis.

Dichtung nicht komplett durchschneiden! Nur bis zum unteren Steg!


friSolar ROOF


Auflage 2-seitig, 4-seitig oder noch mehr??

Bemessungskriterium

2-seitige Auflage: GZG 4-seitige Auflage: GZG mit Mittenauflage: GZT!!

d.h. bei Anwendung wo die Gebrauchstauglichkeit nicht relevant ist -> besser OHNE zusätzliche Abstützung

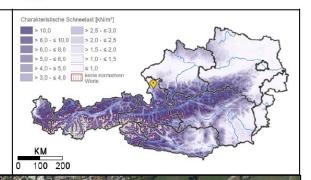
Achtung bei Produkten mit zusätzlicher statischer Versteifung!

Glasformat	Lagerungssystem	180	Last gem. DIN 008 N/m²]	Aufnehmbare Last mit Durch- biegungskriterium L/50 q _d [kN/m²]		
		Drucklast	Zuglast	Drucklast	Zuglast	
CP 60-3	System PUR	0,15		0,57	1.04	
995 x 1700 mm	System 4S	0,84	0,63	2,42	1,04	
2 x 3 mm TVG	System 4S+	2,40		2,40		


zB Indach PV

BV Carport BH Seekirchen

- PV Modul Solarwatt GM 3.0 construct
- 2+2mm Glas/Glas
- Umlaufender Rahmen 40mm
- 1780 x 1052mm
- Auflage des Moduls auf 4 Punkte
- Auskragung ca. 350mm


Charakteristische Schneelast am Boden $s_{\mathbf{k}}$ (50-jährlich)

sowie 25- und 100-jährliche Schneelast (s_{25} und s_{100})

Geogr. Länge: 13,12381° O Geogr. Breite: 47,88813° N

Seehöhe: 507 m

s_k: 1,9 kN/m² s₂₅: 1,5 kN/m² s₁₀₀: 2,4 kN/m²

Quellenangabe: Verwaltungsdaten, DGM: BEV Gewässer, DHM, DOP: BML Schneelast: ÖNORM B 1991-1-3:2022-05 Wind und Schnee: max. Druck 2,47 kN/m² max. Sog -2,39 kN/m²

GZG

- mit Schubverbund G=0,4N/mm²
- nicht linear

Minimale und maximale Verformungen w:

Paket		Ort	Verformung		
Paket	X	У	W		
	mm	mm	mm		
1	526.00	930.45	-24.33	(min)	
	0.00	0.00	0.00	(max)	

I/100 = -10,5mm << 24,33!! Nachweis nicht möglich

Nachweis Modulrahmen und Tragprofile?

GZT

- mit Schubverbund G=0,4N/mm²
- linear

Maximale Hauptzugspannung:

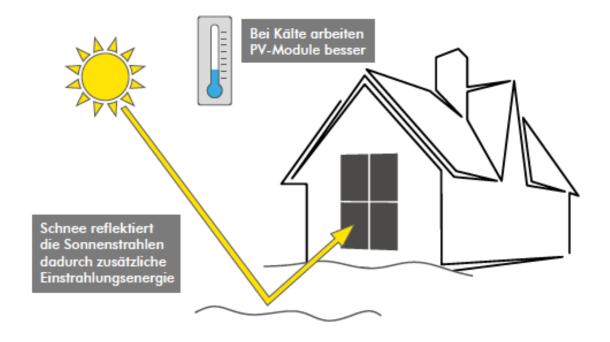
Paket	Sc	hicht	x mm	У mm	σ N/mm²	σ (max) N/mm²
1	3	(oben)	1046.35	5.73	95.86	95.86
		(unten)	5.65	5.73	76.94	
1	1	(oben)	1046.35	1774.27	59.64	128.65
		(unten)	526.00	909.70	128.65	

Auf Anfrage an Anywhere Solar und dem Elektroplaner:


-> leider keine Antwort (!)

Gelebte Praxis?

Zertifizierte mechanische Belastbarkeit nach IEC 61215 Soglast bis 3.600 Pa (Testlast 5.400 Pa) Auflast bis 8.100 Pa (Testlast 12.150 Pa)


Photovoltaik Fassaden

Vertikale Photovoltaik Systeme

- vertikale PV Systeme bleiben schneefrei und sind witterungsfest
- Schnee kann Sonnenstrahlen Richtung PV reflektieren
- Sonne steht in den kalten Jahreszeiten tief (optimaler Einfallswinkel)
- je kälter desto besser arbeitet eine PV (ca. +4% Ertrag/-10° C)

Herausforderung

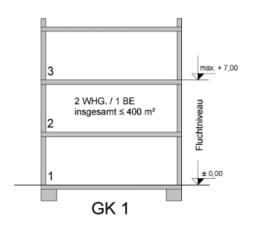
- Multifunktional (Stromerzeugung, Wetterschutz, Bauphysik, Dichtheit, Ästhetik...)
- Wärmedämmung
- OIB RL4 (herabstürzende Teile)
- Blendung
- Statik (Windlast etc.)
- OIB RL 2(Brandschutz!!)
- ..

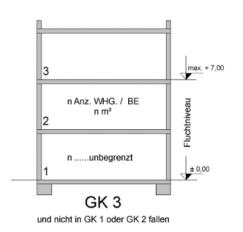
Tabelle 1a: Allgemeine Anforderungen an das Brandverhalten

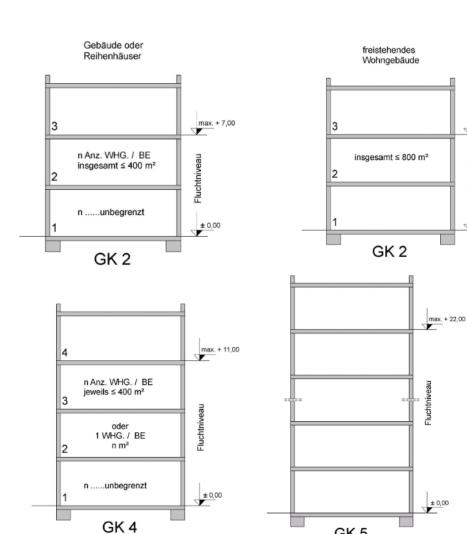
			T	Т		GK 5				
Gebäudeklassen (GK)		GK 1	GK 2	GK 3	GK 4	≤ 6 oberirdische	> 6 oberirdische			
						Geschoße	Geschoße			
1 Fas	saden				_					
1.1	Außenwand-Wärmedämmverbundsysteme	E	D	D	C-d1	C-d1	C-d1			
1.2	Fassadensysteme, vorgehängte hinterlüftete, belüftete oder nicht hinterlüftete									
1.2.1	Gesamtsystem oder	E	D-d1	D-d1	B-d1 (1)	B-d1 (1)	B-d1			
1.2.2	Einzelkomponenten						·			
	- Außenschicht	E	D	D	A2-d1 (2)	A2-d1 (2)	A2-d1 (3)			
	 Unterkonstruktion stabförmig / punktförmig 	E/E	D/D	D / A2	D / A2	D / A2	C / A2			
	- Dämmschicht bzw. Wärmedämmung	E	D	D	B (2)	B (2)	B (3)			
1.3	Vorhangfassaden - Einzelkomponenten									
İ	- Profil (Rahmen, Pfosten oder Riegel)	E	D	D	D	D (12)	A2			
İ	- Ausfachung als Verglasung	E	D	D	C-d2	B-d1	B-d1			
İ	- Ausfachung als Paneel	E	D	D	A2-d1 (12,13)	A2-d1 (12,13)	A2-d1			
	- Abdichtung zwischen Ausfachung und Profil	E	E	E	E	E	E			
	 Beschichtung (sofern nicht mit Profil oder Ausfachung mitgeprüft) 	E	D	D	D	В	В			
1.4	Sonstige Außenwandbekleidungen oder –beläge sowie nichttragende Außenbauteile	E	D-d1	D-d1	B-d1 ⁽⁴⁾	B-d1 ⁽⁴⁾	B-d1			
1.5	Gebäudetrennfugenmaterial	E	E	E	A2	A2	A2			
1.6	Geländerfüllungen bei Balkonen, Loggien u. dgl.	Ī-	-	-	B (4)	B (4)	В			

max. + 7,00

Fluchtniveau

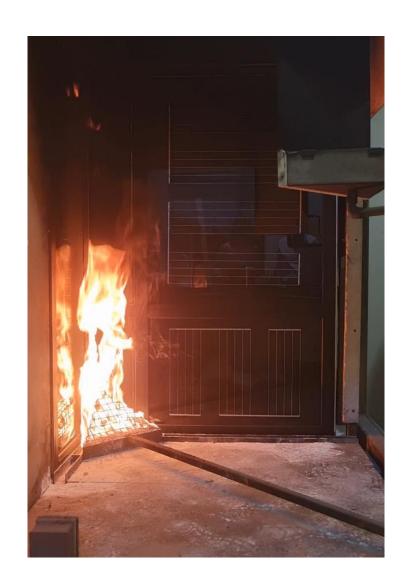

± 0,00


Gebäude, die nicht

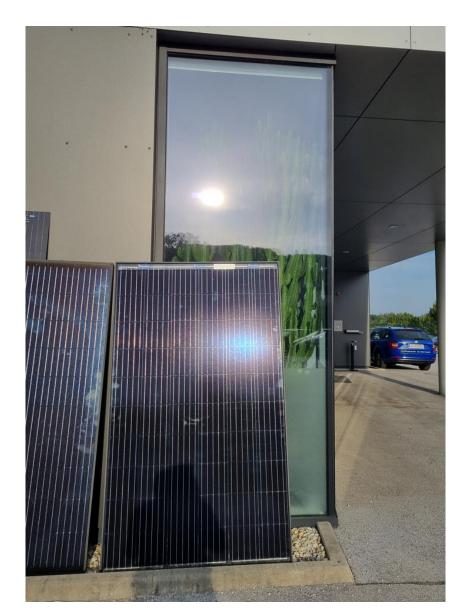

GK 5

in GK 1, 2, 3, oder GK 4 fallen

Gebäudeklassen



Brandtest nach EN13501 (SBI Test)


Fassadenbrandtest nach ÖNORM B3800-5

Blendung

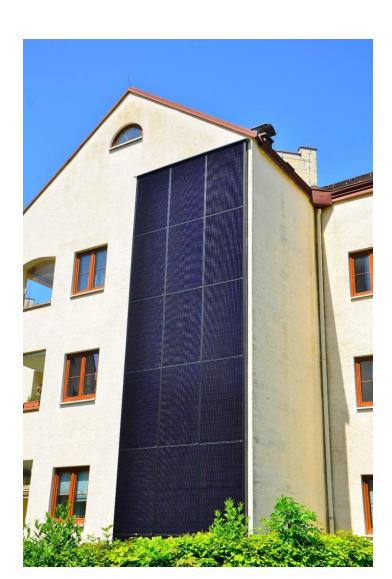
Verschiedene Ansätze

- mit individuell gefertigten Glas/Glas Modulen
- mit Standard Glas/Glas Modulen
- mit Standard gerahmten Glas/Glas Modulen

Individuelle PV Fassade

- Individuelle Optik und Abmessung
- Materialpreis ca. 500 700 €/m²
- Aufwändige Planung
- Geringer Ertrag ca. 100 160 Wp/m²
- I.d. R. nicht brandgeprüft!

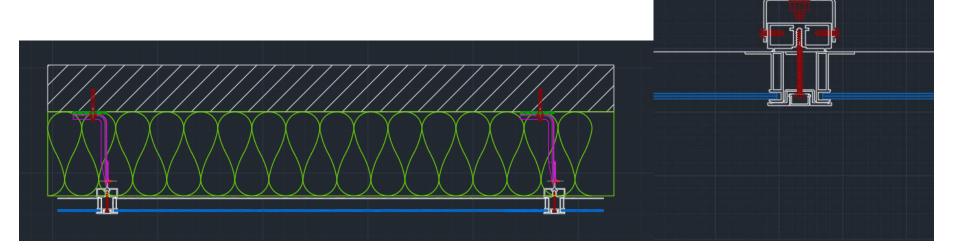
PV Fassade mit Standard Glas/Glas Module



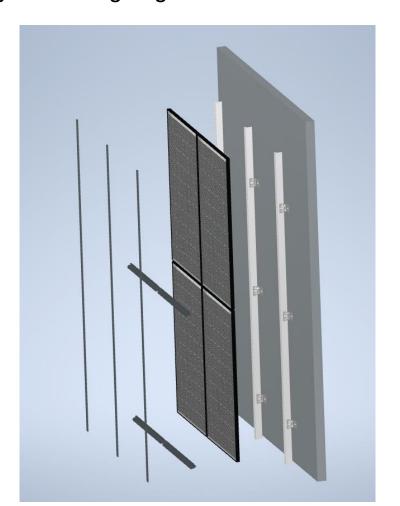
- Individuelle Optik
- Materialpreis ca. 300 400 €/m²
- Geringer Ertrag ca. 120 160 Wp/m²
- I.d. R. nicht brandgeprüft!

Passfelder mit Blindmodule oder Fassadenplatten

PV Fassade mit Standard gerahmten Glas/Glas Modulen


- Photovoltaik Fassade mit Standardpaneele
- sehr wirtschaftlich
- Hohe Erträge im Winter
- Geprüft nach EN13501 und B3800-5

friSolar WALL


- Als neue VHF Fassade
- Als Sanierungslösung
- Auf bestehende Fassaden
- Preis ca. wie HPL Fassade


friSolar WALL

Als Baukastensystem fertig zugeschnitten und bearbeitet

Vergleich Erträge

PV Fassade mit individuell gefertigten Glas/Glas Modulen oder mit Standard Glas/Glas Modulen färbig

derzeit ca. 220Wp/m²

mit Standard gerahmten Glas/Glas Modulen - dunkel

Amortisationsbeispiel:

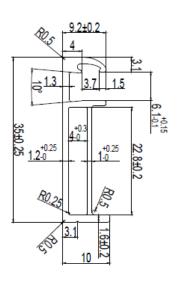
- FriSolar wall, Süd-Ausrichtung Ertrag pro m² ca. 155 kWh/Jahr = € 42,63/Jahr/m² Ertrag*
- Aufpreis auf Alu-Verbundplattenfassade: ca. € 100,-/m²
- ► Amortisationszeit: nur ca. 2,4 Jahre!

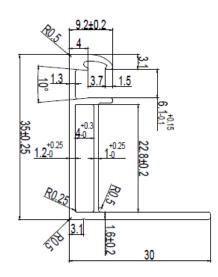
- Bei 20 m² Fassade in 20 Jahren ca. € 17.000,- Ertrag!
- CO₂ Einsparung ca. 28.000 kg!**
- förderfähig!

* Beispiel gerechnet mit üblichen Einstrahlungswerten in Salzburg, 50% Eigenverbrauch, 40 Cent/kWh Bezugspreis, 15 Cent/kWh Einspeisetarif. ** Energiemix Deutschland ca. 420 g CO₂/kWh

Statik bei Fassaden mit 2+2mm Standardmodul – Beispiel Projekt Würth

2.1 Belegungsplan der PV-Module am Gebäude 113




gesamt ca. 1MWp Leistung

- Windlast: $wk = -1,41 \text{ kN/m}^2$
- Modul: friSolar 430Wp Topcon, 2+2mm Glas/Glas, 1134 x 1722mm
- NUR VG -> kein Schubverbund
- Berechnung geometrisch nicht linear
- vBG erforderlich

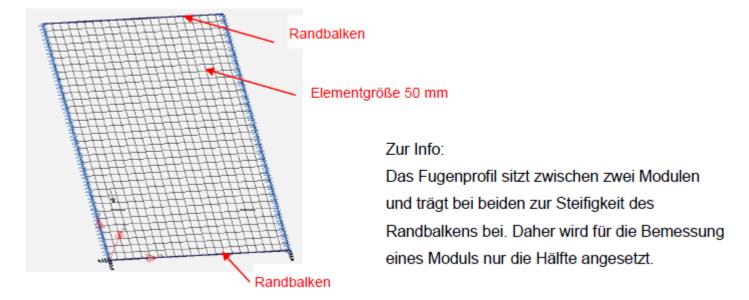
branchenübliche Systeme nur linienförmige Auflage über lange Kante!

kurze Kante

lange Kante

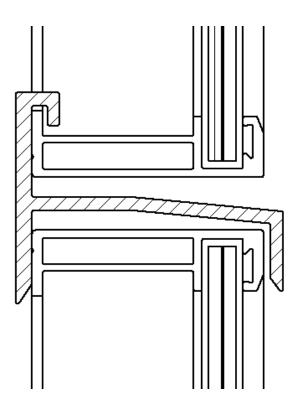
7 Zusammenfassung der Ergebnisse

			Wind w _k	Ausnutzung GZT	Ausnutzung GZG	Ausnutzung GZT	Ausnutzung GZT	Variante
				Glas	Glas	PV-Rahmen	Fugenprofil	
			kN/m ²					
		$G = 0.0 \text{ N/mm}^2$	0,29	100%	431%			01a
	$f_k = 75 \text{ N/mm}^2$	$G = 0.0 \text{ N/mm}^2$	0,14	50%	100%			01b
		$G = 0, 4 \text{ N/mm}^2$	0,74	100%	190%			02a
2-seitige		$G = 0, 4 \text{ N/mm}^2$	0,54	74%	100%			02b
Linienlagerung		$G = 0.0 \text{ N/mm}^2$	0,35	100%	622%			03
	$f_k = 90 \text{ N/mm}^2$	$G = 0.0 \text{ N/mm}^2$	0,14	50%	100%			(01b)
	1 _k = 90 N/IIIII	$G = 0, 4 \text{ N/mm}^2$	0,89	100%	276%			04
		$G = 0, 4 \text{ N/mm}^2$	0,54	74%	100%			(%2b)
	f _k = 75 N/mm ²	$G = 0.0 \text{ N/mm}^2$	1,23	100%	62%			05
4-seitige	· k - 1011/j	$G = 0, 4 \text{ N/mm}^2$	1,70	100%	58%			06
Linienlagerung	$f_k = 90 \text{N/mm}^2$	$G = 0.0 \text{ N/mm}^2$	1,48	100%	74%			07
	1 _k = 30 N/IIIII	$G = 0, 4 \text{ N/mm}^2$	2,00	100%	70%			08
		$G = 0.0 \text{ N/mm}^2$	-1,31	59%	100%	122%		09
2-seitige		G = 0,0 N/mm ²	-1,12	49%	81%	99% 🚩		10
Linienlagerung mit		$G = 0.0 \text{ N/mm}^2$	1,26	57%	100%	181%		11
Randbalken	$f_k = 75 \text{ N/mm}^2$	$G = 0.0 \text{ N/mm}^2$	0,80	36%	55%	99%		12
(PV-Rahmen	1 _k = 7514/11111	$G = 0, 4 \text{ N/mm}^2$	-1,74	68%	100%	133%		13
ohne		$G = 0, 4 \text{ N/mm}^2$	-1,39	53%	71%	100%		14
Fugenprofil)		$G = 0, 4 \text{ N/mm}^2$	1,68	69%	100%	195%		15
		$G = 0, 4 \text{ N/mm}^2$	0,99	42%	45%	100%		16
		$G = 0.0 \text{ N/mm}^2$	-1,67	100%	90%	40%	88%	17
	f _k = 75 N/mm ²	G = 0,0 N/mm ²	-1,84	107%	100%	45%	100%	18
		G = 0,0 N/mm ²	1,71	100%	93%	61%	118%	19
		G = 0,0 N/mm ²	1,50	92%	81%	51%	100%	20
		G = 0, 4 N/mm ²						
2-seitige Linienlagerung mit Randbalken		$G = 0, 4 \text{ N/mm}^2$						
		$G = 0, 4 \text{ N/mm}^2$						
		$G = 0, 4 \text{ N/mm}^2$		-				
(PV-Rahmen		G = 0,0 N/mm ²	₩					
mit		$G = 0.0 \text{ N/mm}^2$						
Fugenprofil)		$G = 0.0 \text{ N/mm}^2$						
	$f_{\nu} = 90 \text{N/mm}^2$	G = 0,0 N/mm ²						

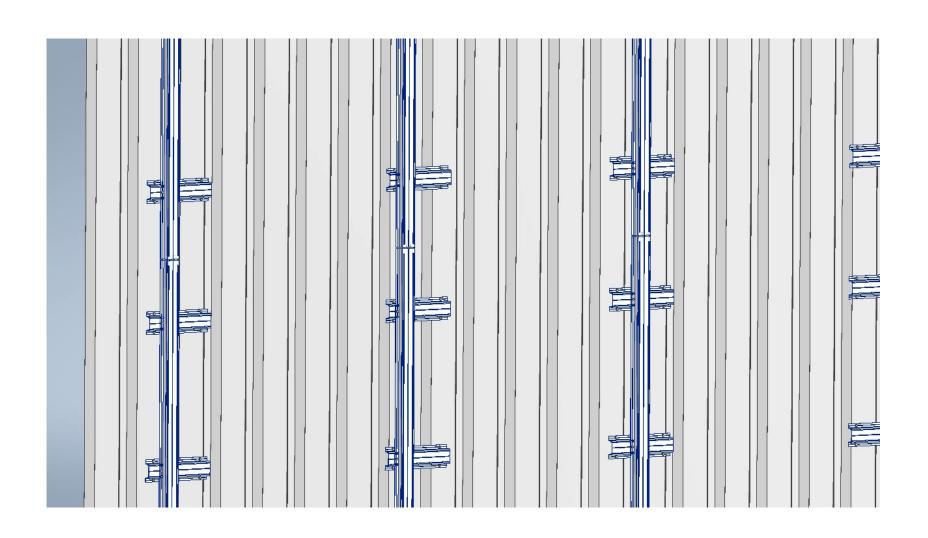

1,12<1,41

Statischer Ansatz:

- 2-seitige Auflage mit Randbalken
- Mindesteinstand >5mm
- Verklebung Glas mit Rahmen nicht berücksichtigen keine Langzeitwerte


FEM-Netz:

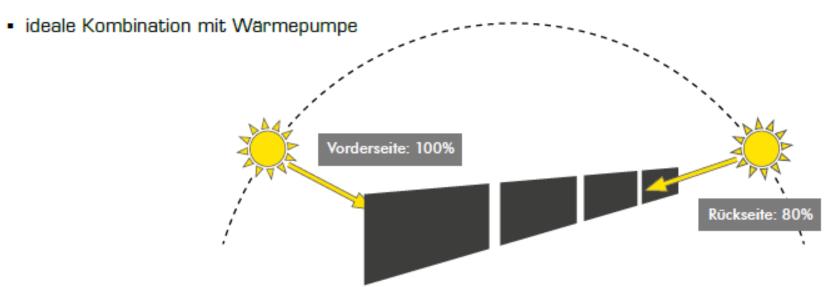
Verstärkung des PV Rahmens notwendig!


- Optimales Verhältnis Flächenträgheitsmoment
- kein Profil darf zu viel Last an sich ziehen

Vorteile:

- statische Verstärkung
- Montagehilfe
- verbessertes Brandverhalten
- geschlossene Fassade
- Eigengewichtsbatragung

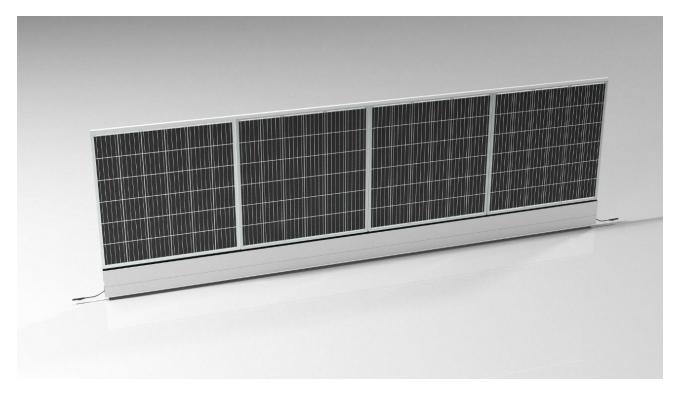
friSolar Geländer

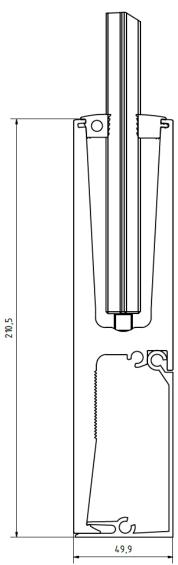


- PV Nurglasgeländer oder Alu Steher
- Komplett verdeckt verkabelt
- Vorgefertigt als Bausatz geliefert
- Absturzsichernde Verglasung nach ÖNORM B3716
- Bifaciale Zelltechnologie für bis zu 25% Mehrertrag

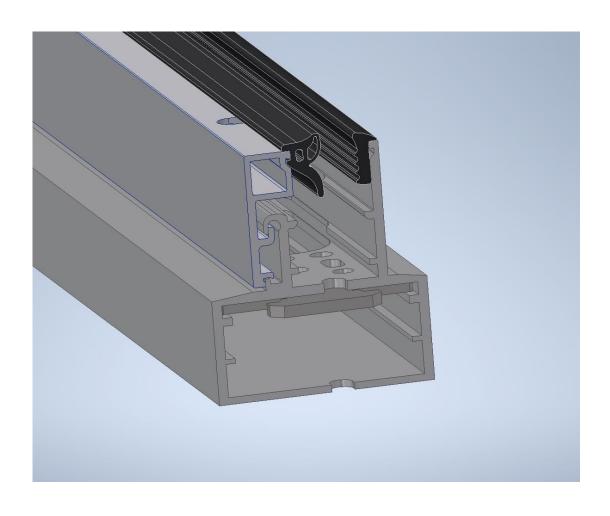
Bifaciale Zelltechnologie

- bifaciale Zelltechnologie ermöglicht bei Balkonen und Zäunen einen Energiegewinn von bis zu +30%
- optimal für Ost-West Anlagen




friSolar Geländer

friSolar Railing Pure



Anspruchsvolle Profilgeometrie für verdeckte Kabelführung

Auftraggeber Julius Fritsche GmbH

Client Gewerbepark 3, 5102 Anthering, Österreich

Identifikation friSolar Solitek B.60

Identification

Bezeichnung PV-Modul als Geländerausfachung / PV module used as a railing infill

Designation

Abmessungen Glas Breite / Width 1770 mm Dimensions of Höhe / Height 1049 mm

glazing

Rahmenmaterial Aluminium

Frame material 2x3mm ESG!!

Füllelement friSolar Solitek B.60

Filling element

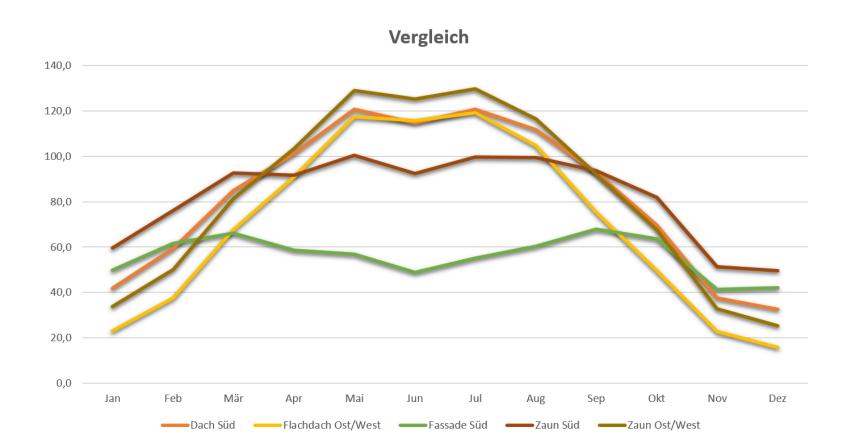
Profilsystem friSolar railing classic Profile system friSolar railing classic

Glass support Two-sided horizontal

Einstufung Prüfelement It. Angabe Hersteller / Grading test element acc. to manufacturer

Rahmenabmessungen Glasabmessungen Fallhöhe Frame dimensions Glass dimensions Drop Hight

Breite / Width 1990 mm Breite / Width 1770 mm **450 mm**


Höhe / Hight 1119 mm Höhe / Hight 1049 mm

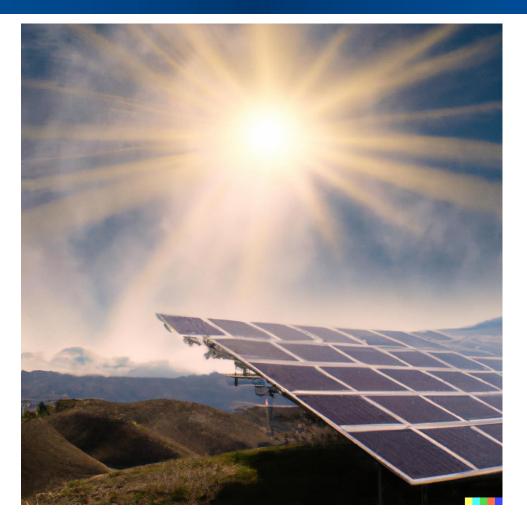
Die Geländerausfachung friSolar Solitek B.60 erfüllt die Kriterien der ÖNORM B 3716-3 für eine maximale Pendelfallhöhe von 450 mm.

friSolar Geländer

- Ideal in Kombination mit Wärmepumpen
- Hohe Erträge im Winter

friSolar Zaun

Für Heimanwendung oder Agrar



Zum Schluss:

- PV wird bzw. ist Bestandteil von Glasanwendungen
- fachübergreifende Kompetenzen notwendig
- Normung / Regelwerke müßen mit technologischen Fortschritt mithalten
- schnelle Zulassungsverfahren notwendig

ganz zum Schluss:

KI generiertes Bild: DALL-E Eingabe: "a picture that shows the importance of photovoltaics in the future for the fight against the climate change"

-> Sich nur auf die Technik und Innovation verlassen ist ein schlechter Ansatz!

Danke für Ihre Aufmerksamkeit!

Mehr Informationen über die Firma Fritsche, sowie über unsere Produkte finden Sie im Internet unter:

www.fritsche.eu.com